
MONITORING 101
A primer to the philosophy, theory,
and fundamental concepts involved

in systems monitoring

by Leon Adato

page 2

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS

DEDICATIONS

To Debbie.

As with anything I have ever done that mattered, this is dedicated to my best

friend and my closest confidant. Even after 3 decades, you still mean more

to me than everything else.

MONITORING 101

page 3

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS

ABOUT THIS GUIDE
This guide was written to provide an introduction to monitoring for someone who

is familiar with computers and IT in general, but not with monitoring as a discipline.

As such, (almost) no former knowledge or experience is required before delving into

this document.

If you already have experience with monitoring, this may not be the book for you.

Then again, it couldn’t hurt.

This guide is completely tool-agnostic. While the author has decades of experience

with a wide variety of monitoring solutions, those experiences were used only in the

sense that provided insight into general trends and techniques. Nothing in this doc-

ument will prepare you to actually dive into monitoring using software package XYZ.

But, it is my hope that after reading this, when you do start using monitoring software

XYZ, some of the functions will be less arcane, and you’ll be able to say “Oh, I know

why they are asking me for that option.”

MONITORING 101

page 4

TABLE OF CONTENTS

Dedications 2

About this Guide 3

It Was Going To Be a Great Morning 5

Introduction 7

Monitoring Conceptualized: The FCAPS Model 8

Building Blocks of a Monitor 9

Monitoring Techniques 12

Ping 12

SNMP 12

SNMP Trap 13

SNMP Poll 13

Syslog 13

Logfile Monitor 14

EventLog Monitor 14

Performance Monitor Counters 14

WMI 15

SQL Query 15

Script 15

Log File Aggregation 16

IPSLA 16

NetFlow 17

API 17

Tips, Tricks & Traps 19

Flapping (or “sawtoothing”) 19

Parent-Child 19

Monitoring a Delta 20

Event Correlation 20

Agent –based or Agentless? 22

So What Should I Buy? 23

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

page 5

IT WAS GOING TO BE A GREAT MORNING
(or “Why do we need monitoring?”)

You get to your desk at 9 am sharp, having had a great morning workout, followed

by a shower, a fantastic cup of coffee, and a frustration-free drive to the office.

You are fresh and focused and ready to make a serious dent in that growing to-do

list, which includes curious items like users complain that ‘the Internet’ gets really

slow every so often, and the CFO thinks we’re overpaying for WAN bandwidth.

How much are we using?

Logging on to your PC, you notice that no emails have come in overnight. “That’s

odd,” you’re thinking.

Seeing you arrive, your buddy now walks over and says “looks like something’s

wrong with email.”

You log on to the email server and find out that it’s… well, you don’t actually log

on to the email server. Remote Desktop won’t make a connection. You try pinging

the box, and there’s no response.

With a sinking feeling, you make the long journey to the computer room.

All hope of working on your to-do list is now gone as you stab a finger at the serv-

er’s power switch. A few moments later you are logged on at the console. A pop-up

alert on the screen tells you that one of the drives is completely full.

Much… (much!) later in the day, a picture forms of what happened. Sometime

during the night (2:30 am to be exact) the data drive filled up, causing mail services

to stop. Shortly after that, errors on the system drive reached a critical point, and

the entire system crashed.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

page 6

(Meanwhile, in the heat of fighting this fire, you didn’t dig deeper to note that the

data drive has been hovering at 95% capacity for over a week. And the drive that

contains the operating system has been throwing read/write errors every 15 min-

utes for the last 17 days.)

About this time, your manager, who’s been keeping a respectful distance while you

worked, lets you know that the CEO is back from his contract discussions overseas.

During the flight home, the CEO needed to send some follow-up documentation to

the customer. When the corporate email wasn’t responding, he resorted to creating

a professional-sounding Gmail account and sent the files from there. The three of

you are scheduled to sit down and debrief the situation in 30 minutes.

You start to pull some notes together for what you predict will be an uncomfort-

able conversation…

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

http://xkcd.com/350/

page 7

INTRODUCTION
If you have worked in IT for more than 15 minutes, the situation described above

will strike you as neither unique nor rare—even if it is somewhat colorful. Systems

crash unexpectedly, users make bizarre claims about how “the Internet” is slow,

and managers request statistics, which leaves you scratching your head wonder-

ing how to collect them in a way that is meaningful and doesn’t consign you to the

hell of hitting Refresh and spending half the day writing down numbers on a piece

of scratch paper just to get a baseline for a report.

The answer to all these challenges (and many, many more) lies in effectively moni-

toring your environment, collecting statistics, and/or checking for error conditions

so that you can act or report effectively when needed.

Of course, this is easier said than done. Saying “let’s monitor our network” pre-

sumes that you know what you should be looking for, how to find it, and how to

get it without impacting the system you are monitoring. You’re also expected to

know where to store the values, what thresholds indicate a problem situation, and

how to let people know about a problem in a timely fashion.

Yes, having the right tool for the job is more than half the battle. But, it’s not the

whole battle, and it’s not even where the skirmish started.

To build an effective monitoring solution, the true starting point is learning the

underlying concepts. You have to know what monitoring is before you can set up

what monitoring does.

This document is designed to introduce you to the underpinnings of monitoring

techniques, theory, and philosophy, as well as the ways in which monitoring is

accomplished.

At no time will there be a discussion of specific software. At the end of the day,

ping is still just ping, no matter how pretty a wrapper you put around it.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

page 8

MONITORING CONCEPTUALIZED: THE FCAPS MODEL
Sometimes it helps to structure a concept into a model or imaginary framework,

so you can fit all the new concepts into an overarching structure. Luckily, moni-

toring already has one of these, called FCAPS.

FCAPS stands for Fault, Capacity, Administration, Performance, and Security. Using

the image of an airplane flying from one city to another, the FCAPS model would

look something like this:

While this is certainly a simplification of what can be a very broad subject, most of

it holds true most of the time.

Monitoring is largely concerned with the F, C, and P of FCAPS. Administration

(who has access to a system) and Security (who actually accessed the system at

any particular time) is usually the purview of the security team and/or your RADI-

US/TACACS-type tools.

Thus, the rest of this document will focus on F, C, and P, and leave A and S to go

outside and play in traffic.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

FCAPS What It Tells You On the Airplane

Fault What’s up? Is the plane in the air, at the gate, or has it crashed?

Capacity How much?
How many people are on the plane? How many seats
are unoccupied? How much fuel is in the tank?

Administration Who could?
Who purchased tickets for this flight, and, therefore,
is allowed on the plane (whether or not they are on
right now)?

Performance How fast?
How fast is the plane going? Is it using the optimal
fuel-oxygen mix? How many miles per gallon is the
plane getting?

Security Who did? Who got on the plane?

http://en.wikipedia.org/wiki/FCAPS

page 9

BUILDING BLOCKS OF A MONITOR
Regardless of the software you use, or the protocol, or the technique, there are

a few fundamental aspects of a monitoring system that exist across the board.

These are the basic components of a monitor. Not every building block will be

present in every software tool or specific monitoring technique, but they are

concepts you should understand, and you should realize that they all could fac-

tor into your work.

Element

This is a single aspect of the device you are monitoring, which returns one or more

pieces of information. An example of this is an IP address, which could yield three

data points: 1) whether it is responding, 2) how quickly it is responding, and 3) any

packets dropped during the response.

Acquisition

How you get this information is another key concept. Does your monitoring routine

wait for the device to send you a status update (push) or does it pro-actively go out

and poll the device (pull)? What protocol does it use to connect to the target device?

Frequency

Closely tied to acquisition is how often information comes back. Does the device send

a “heartbeat” every few minutes? Does it send only data when there is a problem? Does

your polling process go out every five minutes and collect the element statistics?

Data retention

Monitoring, by its very nature, is data-intensive. Whether the acquisition method is

push or pull, those statistics typically have to go somewhere and they pile up pretty

quickly. At its simplest level, data retention is a Yes or No option. Either the statis-

tic is 1) collected, evaluated, acted upon, and then forgotten, or 2) data is kept in a

datastore. But looking deeper, data could be kept in a rolling log, which is a certain

size, or spans a particular amount of time, and then the data “rolls off” or is deleted

from the log. Or, it could be kept in a log which archives at a predetermined interval

(when the file grows to a certain size, when a particular time period has elapsed,

etc.), or data could be kept in a more robust datastore (i.e. a database).

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

page 10

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

Data aggregation

After you keep statistics for a while, it might become clear that the granularity of

data isn’t needed after a particular time. Aggregation is the act of consolidating,

or averaging, a range of data points into a single number. For example, you might

collect statistics every five minutes. After a week, those five-minute values are

aggregated to an hourly average (thus 12 records crunch down to one). After a

month, those hourly values are further aggregated to a daily average. In this way,

database usage is optimized for short-term detailed analysis with a fuzzier long-

term historical view.

Threshold

Referring back to FCAPS, the idea of fault monitoring is that you collect a statistic

and see if it has crossed a line of some kind. It can be a simple line (is the server on

or off?) or it can be more complex. Regardless, that line, which is crossed, is called

a threshold. Examples of thresholds include:

•	SINGLE TRIGGER

This is where a single condition has been breached. Single condition does not

necessarily mean a simple when x is greater than 50 formula. The condition

could be complex (i.e. when the current time is after 8:00 am and before 5:00

pm, and x is greater than 50, and y is less than 20). But despite the possible

complexity of the trigger itself, it is a single line in the sand.

•	DELTA

This threshold doesn’t look at a fixed point; it looks at the rate of change. For

example, when disk utilization goes up by 20%.

•	OCCURRENCE COUNT

Typically, in combination with a single trigger, this measures the number of

times something occurs. For example, when %CPU goes higher than 85%, and

it happens 5 times in a row over 15 minutes.

Reset

Reset is the logical opposite of threshold. It marks the point where a device is con-

sidered “back to normal.” In a simple example, if a threshold is “when the device

page 11

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

is down,” the reset would be “when the device is up.” But, it’s not always an exact

match. A threshold might be “when disk utilization is over 85%,” but the reset could

be “when disk utilization goes below 70%.” Like thresholds, a reset could occur

based on a single trigger, a delta, or even an occurrence count.

Response

With all the discussion about thresholds and resets, the next logical question might

be “OK, so then what?” What happens when a threshold is breached? Response

defines that aspect. A response could be to send an email, play a sound file, or run

a predefined script. The potential options are limited only by the capabilities built

into the specific monitoring application. But the concept remains the same.

Requester (local agent or remote system)

With all the talk about monitoring, little has been said (yet) about where the mon-

itoring is occurring, meaning, from what point in the environment are the moni-

toring statistics being requested (or to what location are they being sent, if we’re

talking about a push)? In its simplest terms, you have two choices: 1) a piece of

software running on the monitored device itself (i.e. an agent), or 2) some location

outside of the monitored device (agentless). More (a whole lot more) will be dis-

cussed on this concept later in this guide.

Authentication

Tightly tied up with the requester is authentication. How does the requester

(whether agent or agentless) have the permission to ask for or receive the mon-

itoring statistics? Authentication methods vary wildly, and are usually specific to

particular monitoring techniques. We’ll go into more detail about this later. But for

now, understand that the part and parcel with the ability to monitor something is

the permission to monitor it.

page 12

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

MONITORING TECHNIQUES
After all the theory and concepts, it’s time to get down to some of the nitty-gritty.

In this section, we’ll discuss the various techniques that can be used to monitor.

It’s important to note that, with possibly a few esoteric exceptions, this list com-

prises all the ways monitoring data can be collected. That fact can get lost when

working with actual monitoring software. Many vendors of monitoring solutions

like to appear as if what they are doing is super-ninja-voodoo-magic, and that

nobody does it like them.

This is (to put it politely) a pile of horse feathers.

The software vendors are still using the techniques below. Where the sophisti-

cation comes in is with the frequency, aggregation, the relevance of displays, the

ease of implementation, and other aspects of “packaging.” More on that later.

One final note: the list below is a brief overview of each technique. It is by no

means an in-depth analysis. For that, there is always Google.

PING

Good ol’ ping. That great granddaddy of all monitoring. Ping sends out a packet to

the target device, which (if it is up and running) sends an “I’m here” type response.

The result of a ping tells you whether or not the device is responding at all (i.e. up),

and how fast it responded.

Usually, ping monitoring sends out multiple packets, and calculates up/down

based on how many positive responses come back. Some tools send out just one

ping. Some send one ping, and if it doesn’t come back, send out more to verify

whether the device is really down or just sluggish.

SNMP

SNMP (Simple Network Management Protocol) has a few pieces that combine to

provide a powerful monitoring solution.

First, SNMP is comprised of a list of elements that return data on a particular device.

It could be CPU, the average bits per second transmitted in the last five minutes,

or the number of errored frames. Each of these elements is assigned a numeric ID

page 13

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

(object ID or OID), which are grouped hierarchically. The entire collection of OIDs

is contained in a Management Information Base (MIB).

Second, an SNMP service (also called an agent) runs on the target device, keeping

track of each of those elements and what their current values are. While it seems

like a lot of data, the agent is running locally, and the data points are small and

easily managed. Plus, the agent is only keeping the current number, so there is no

on-going storage of information.

Finally, that agent provides that data based on either an SNMP Trap trigger, or an

SNMP Poll request. The combination of both allows you to collect information

about a device, either at preset collection intervals (polls), or only when a specific

threshold has been exceeded (traps).

SNMP Trap

A trap occurs when one of the internal data points crosses a threshold (that thresh-

old is also indicated within the MIB). When that trigger is crossed, the SNMP pro-

cess running on the target device will pro-actively send out information about the

OID that was triggered. The SNMP agent is configured to send that information to

another system in your environment, called a Trap destination.

SNMP Poll

An external device can also request the data for an OID at any time by polling the

device. This is also called an SNMP GET request.

SYSLOG

Syslog messages are similar to SNMP traps. A syslog service (again, agent) takes events

that occur on the device and sends them to a remote listening system (Syslog desti-

nation server). Syslog differs from SNMP Traps in that syslog messages are relatively

free-form, and aren’t dependent on the MIB-OID structure that SNMP requires.

Syslog can be used as a replacement for traditional log file monitoring. Instead

of sending a message to a log, it is sent via the syslog protocol to an external de-

vice—typically, one that collects syslog from multiple devices, and then acts on

those triggers.

page 14

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

Syslog is often the monitoring option of choice for security devices such as fire-

walls and IPS systems.

In addition to being more free-form, Syslog tends to be “chattier” than SNMP Traps.

However, it’s more flexible because many applications can be set up to send sys-

log messages, whereas few can send out customized trap items without a lot of

pre-work on the part of the developer.

LOG FILE

Log file monitoring is pretty straightforward. An application or process writes mes-

sages to a plain text file on the device. The monitoring piece of that comes in the

form of something that reads the file and looks for trigger phrases or words.

For example, ERROR. Unless, of course, it’s in a line that says NO ERROR FOUND.

EVENT LOG

Event log monitoring is specific to Windows®. By default, most messages about

system, security, and (standard Windows) applications events are written here.

When an event is written, the standard data elements are:

•	 Message: Event message controlled by the application.

•	 Category: Used to direct where the event will be logged.

•	 Priority: Used to determine if the event will be logged.

•	 Event ID: Used to classify events.

•	 Severity: Used to determine the event notification.

•	 Title: Further identifies the event.

Event log monitors watch the Windows event log for some combination of EventID,

category, etc., and perform an action when a match is found.

PERFORMANCE MONITOR COUNTERS

Performance Monitor (or PerfMon) counters are another Windows-specific

monitoring option, and can reveal a great deal of information, both about errors

on a system, and ongoing performance statistics. Perfmon counters have the

following attributes:

page 15

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

•	 The name of the machine.

•	 The category of the counter (e.g. processor).

•	 The name of the counter (e.g. % processor time).

•	 The instance (if any) for the counter. (e.g._total).

Perfmon counters can be collected remotely by a machine that has privileges

on the server to be monitored. In addition to the hardware and operating system

information that is present by default, many applications come with their own

perfmon counters as well.

WMI

WMI (Windows Management Instrumentation) is, at its heart, a scripting lan-

guage built into the Windows operating system. A wide variety of tasks can be

performed via WMI, but for the purpose of monitoring, the focus is on collecting

and reporting information about the target system.

The benefit of WMI is that, like perfmon counters, a remote system with the right

privileges can run WMI scripts without having to be “on the box” using some sort

of local agent.

Where WMI exceeds perfmon counters is in its ability to interact with the target

device. Via WMI, you could run a script to read a directory, get the number of con-

nected disks, or find out who the logged-in users are.

SQL QUERY

Just as the name suggests, this monitoring technique involves running a query

against a database. The point of this query is to find out information about the

database server itself. Thus, you would (typically) query the system tables to find

out about the number of client connections, transactions per second, size of the

transaction log, the number of active connections, etc.

SCRIPT

This is one of the easiest monitoring methods to understand, and is certainly the

broadest in scope. Running a script to collect information can be as simple or

complicated as the author chooses to make it. In addition, the script might be run

page 16

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

locally by an agent on the same device, and report the result to an external sys-

tem. Or, it might run remotely with elevated privileges. All of this (and more) has to

be determined by the script author and the monitoring specialist.

LOG FILE AGGREGATION

Log file aggregation, as mentioned previously, is the process of collecting log files

(including the Windows Event Log) from multiple systems and bringing them to a

central location. Once this is done, all the information from those logs is combined

in a way that lets the aggregation system track which device the log originated on.

IP SLA

IP SLA (short for Internet Protocol Service Level Agreements, which explains nothing

about what this does) is a pretty comprehensive set of capabilities built into Cisco

equipment (and others nowadays, as they jump on the bandwagon). These capa-

bilities are all focused on ensuring the voice-over-IP (VoIP) environment is healthy.

Functionally speaking, IP SLA allows you to set up certain actions to occur on a

network device, and have the results of that operation reported back to a remote

server. Examples of the types of operations include:

•	 Check if a webpage is responding.

•	 Check if a DNS server is responding and resolving names correctly.

•	 Check if a DHCP server is responding and handing out IP addresses (and that
it has addresses available to hand out).

•	 Set up a fake phone call with another IP SLA-capable device, and collect

statistics about the call quality including jitter, packet loss, MOSS and more.

This is a big deal because it uses the devices that are part of the network infra-

structure, rather than requiring you to set up separate devices (or agents on exist-

ing PC’s or servers) to run tests. In addition to being able to test performance be-

tween specific points on the network, certain tests (like DHCP) can only be done

on the same network segment where the responding device is located.

page 17

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

NETFLOW

Standard monitoring can tell you that the WAN interface on your router is passing

1.4Mbps of traffic. But who is using that traffic? What kind of data is being passed?

Is it all HTTP, FTP, or something else?

NetFlow answers those questions. It sets up the information in terms of “con-

versations”—loosely defined as one session of data transfer between two com-

puters that use the same protocol. So if DesktopComputer_123 is sending a file

to Server_ABC via FTP, that is one conversation. If the same PC is also brows-

ing a webpage on the same server using HTTP, that is a different conversation.

If the same PC is also streaming a video from YouTube (also HTTP), you have a

third conversation.

NetFlow data is captured by a network device that is somewhere in the middle of

the conversation—usually one or more routers near the center of the network (or

one router at each remote location if there are site-to-site communications that

don’t go through the core). This device collects the NetFlow data and sends it to

the monitoring server every so often. It is up to the monitoring server to aggre-

gate, parse, and analyze the data.

Note that the two machines in the conversation (DesktopComputer_123 and

Server_ABC, in my example) do NOT need to be monitored. Just the core device.

Conversely, the core device must be capable of capturing and sending NetFlow

data. Many (but not all) Cisco routing devices can do this. Other brands/models

might also be able to do so, but you should check.

API

Using an API is the murkiest of all monitoring techniques. The essential concept

to understand is that there are hooks built into an application that allow for a data

request to be heard, and that data is sent as a response. This is all done in a way

that is not already laid out in this document.

Two notable applications in this category (at the time of this writing) are Microsoft®

and VMware®. The difference is that the Microsoft API is only available to its own MS

SCOM monitoring product, while the VMware API is published, and several vendors

take advantage of it.

page 18

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

The upshot is that if your monitoring software can take advantage of this, that’s

great. If not, there is not much you are going to do about it short of writing your

own program that requests and handles data from this source.

There’s so much
I want to tell you...

page 19

TIPS, TRICKS, AND TRAPS
This section lists out various monitoring-related issues, gotchas, tricks, or philo-

sophical ideas that may help you get a leg up on your work. They are listed in no

particular order.

FLAPPING (OR “SAWTOOTHING”)

When an alert repeatedly triggers (a device that keeps rebooting itself, a disk drive

that hovers on the edge of full, and processes keep deleting/creating temporary

files so that one moment it’s over threshold, the next it’s below), that condition is

known as flapping or sawtoothing.

Here are a few techniques that can be used to avoid this, depending on the toolset:

•	 Suppress events within a window. Some software can ignore duplicate events

during a period of time.

•	 Add a delay before triggering. If you need to ensure that a failure condition is

absolutely real, some monitoring tools allow you to wait xx minutes (or for xx

occurrences of the alert) before triggering an alert.

•	 Do not cut a new alert until the original has reset. More sophisticated moni-

toring tools will wait for a reset event before triggering a new alert of the same

kind. This reset typically looks like the alert trigger, but in reverse (if the alert is

> 90%, the reset might be < 90%). Better tools will let you code the reset rules

separately so that you might trigger when disk > 90%, but it won’t reset until its

< 80%. Even better, if you can add delays to both the alert trigger and the alert

reset, you can trigger when the device is down for 2 minutes, but only reset

after it has been up for 10 minutes.

•	 Two-way communication with a ticket or alert management system. Best case

would be for the monitoring system to communicate with the ticket and/or

alert tracking system so you can never cut the same alert for the same device

until a human has actively corrected the original problem and closed the ticket.

PARENT-CHILD

Imagine a simple environment where you have a remote site with a router, a

switch connected to the router, and a server connected to the switch. And, you

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

page 20

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

are monitoring from the home office. Assume you want to get alerts when a

device goes down (i.e. ping stops working).

Without any special techniques, if the router goes down you are going to get (at

least) three alerts—for the router, the switch, and the server.

Parent-child relationships (which typically have to be set up manually for each set

of devices) are a way of telling the monitoring system what is connected and how.

This way, when a parent device is down (the router is the parent of the switch, the

switch is the parent of the server), any alerts related to the child devices are sup-

pressed. When the router is down, the switch isn’t (necessarily) down. It may be

simply unreachable.

In more sophisticated tools, the software might actively check the upstream par-

ent before marking a device as down, and continue all the way up the chain until it

finds the highest level device that is down. This is known as upstream verification

(or conversely, downstream suppression). In many cases, parent-child manage-

ment is accomplished by adding an extra polling cycle before marking devices

down IF they have a parent device. This way the parent device status can be veri-

fied in the normal polling routine, and doesn’t increase the load on the server.

MONITORING A DELTA

In some cases, such as when monitoring disk space, you may not be interested in

a specific numeric threshold (alert when the disk is more than 90% utilized). This is

because the disk sizes are so vast that even 1% is not enough to cause immediate

alarm (remember, 1% remaining on a 1 terabyte drive is still 100+ gigabytes).

Instead, in some cases, what you want to monitor is the delta, or the rate of change.

Here, you might be interested in knowing that disk utilization has gone up by more

than xx% over yy minutes, which might indicate a spike in consumption. If left un-

attended, this could result in a disk becoming full within a short time.

Certainly, the actual disk capacity is also a factor. But with many enterprise envi-

ronments today, that threshold is very high.

EVENT CORRELATION

Event correlation is a big topic. It’s much bigger than one section of this document

can accommodate, but it’s important enough to merit a brief discussion.

page 21

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

Event correlation tools can perform the flap detection and suppression, as well

as parent-child correlation (described earlier). In addition, event correlation tools

might perform the following:

•	 On event X, look for Y: When a single event comes in, search the recent events

(in seconds or minutes) for a different event, and trigger if both have occurred.

•	 On event X, wait YY minutes, and look for event Z: Similar to the previous

situation, but in this case, X is the causal or initial event, which starts a timer. If

a second specific event is seen within the timer window, an alert is triggered.

•	 De-duplication: One of two techniques that “fix” flapping. De-duplication usually

involves creating an alert on the first occurrence, and then ignoring all subsequent

occurrences, unless 1) the original event created a trackable ticket, and that ticket

was closed by a human operator, or 2) a certain amount of time has elapsed.

•	 Alert after XX times: The second of two techniques that address flapping. In

this case, the flapping is itself an indicator. If a problem occurs once, it is negli-

gible, but repeated occurrences indicate the presence of a problem. Therefore,

the event correlation system needs to keep track of how many times a par-

ticular error occurs for a particular system. An alert is created when the count

reaches a sufficiently high level (possibly within a specific time frame).

http://xkcd.com/552/

page 22

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

AGENT-BASED OR AGENTLESS?
One of the larger variations on monitoring techniques comes down to whether a

tool works based on agents (small piece of software that runs on every device that

needs to be monitored) or agentless. Each has its benefits and drawbacks. Very

few monitoring solutions use a truly hybrid approach. Most emphasize one over

the other, significantly, if not completely.

Agent-based has the benefit of not being network-dependent (the agent runs as

long as the device is running and stores data locally until it can be forwarded to a

listening server). It usually runs with elevated privileges, enjoys fast execution times

(running as fast as the device itself can run), and is able to run certain actions that

simply do not work between two devices across a network connection.

The downside of agent-based monitoring is that a great deal of effort needs to be

put into deploying, maintaining, and monitoring the health of the agent itself. In

addition, there are times when a monitoring agent can actually cause problems on

a device rather than remaining out of the way and monitoring conditions.

Agentless, on the other hand, is generally innocuous with regard to its impact on

the device being monitored. Even when an agentless monitoring system launches

a script that executes on the device to be monitored. It would be a poorly written

script, rather than the monitoring tool itself, which could have an unforeseen neg-

ative impact on the performance of the device. And, because there are no agents

to deploy, monitoring is often a matter of maintaining a centralized database of

devices that need to be polled on a regular basis. Adding more devices is simply a

matter of expanding the list.

Of course, the trade-off is that agentless monitoring is often not able to accom-

plish as much with regard to the granularity of data collected as well as the robust-

ness of an automated response in the event of a problem. In addition, because all

polling occurs from a centralized server, the load on the monitoring infrastructure

is greater. Therefore, you often need more servers to accomplish what would be

distributed to agents.

All of that said, the agent vs. agentless debate is one of selecting the right tool for

a particular job—not one of “good” versus “bad.”

page 23

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

SO WHAT SHOULD I BUY?
After all is said and done, you still need to buy or build a software tool that does

some of the things described in this document. Because all the software vendors

out there selling solutions are working from the same basic playbook, what should

you look for as a differentiating factor? What is it, exactly, that makes brand X so

much better than brand Y?

The answer has as much to do with you and your organization as it does with how

monitoring gets done.

Will your monitoring team be one person who is also your server team and net-

work team and helpdesk team and database team? If so, you probably need a tool

that sacrifices comprehensive options for simplicity and manageability. Does your

organization need absolute flexibility so that the monitoring solution is the one-

stop-shop for all your needs? You will pay more, and require more staff, but at the

end of the day (or month, or more likely year) you will have a software suite that

fits you like a glove.

With all of that said, the non-technical items you should consider include:

•	 Cost to purchase and install. This includes hardware requirements and the specific

needs for your environment. Do you need a separate system to monitor devices in

your firewall and/or remote sites? How many monitoring systems do you need for

all the devices in your company? And so on.

•	 Ongoing maintenance cost (i.e. license costs in year two and beyond).

•	 Support requirements. How many people are needed to maintain the system? This

is one of those questions that you should NEVER trust the vendor to answer. Talk to

some other companies that are using the software.

•	 How much customization is needed? Again, talking to other companies is extreme-

ly useful here.

For technical requirements, I strongly recommend checking out my feature-func-

tion matrix, which allows you to compare the technical merits of various toolsets:

•	 ODS (open document) version: http://thwack.solarwinds.com/docs/DOC-170962

•	 XLS Version: http://thwack.solarwinds.com/docs/DOC-170959

•	 XLSX Version: http://thwack.solarwinds.com/docs/DOC-170961

http://thwack.solarwinds.com/docs/DOC-170962
http://thwack.solarwinds.com/docs/DOC-170959
http://thwack.solarwinds.com/docs/DOC-170959

page 24

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
MONITORING 101

After all is said and done, you still need to buy or build a software tool that does

some of the things described in this document. Because all the software vendors

out there selling solutions are working from the same basic playbook, what should

you look for as a differentiating factor? What is it, exactly, that makes brand X so

much better than brand Y?

Obviously, we at SolarWinds have a fondness for our own tools. You can visit

http://www.solarwinds.com for more information.

However, The answer has as much to do with you and your organization as it does

with how monitoring gets done.

http://www.solarwinds.com

© 2015 SolarWinds, Inc. All rights reserved. SolarWinds®, the SolarWinds logo, and thwack® are among the trademarks or registered trademarks
of the company in the United States and/or other countries. All other trademarks are property of their respective owners. BR-1511

