
SQL Server Query Performance Tuning:
A 12–Step Program

CHECK FOR
TABLES + ROWCOUNTS

REVIEW EXISTING KEYS, 
CONSTRAINTS 
AND INDEXES

EXAMINE THE 
EXECUTION PLAN

EXAMINE THE FILTERS

ADJUST
 THE QUERY

RECORD
 RESULTS

ANALYZE
QUERY COLUMS

KNOW THE
SELECTIVITY OF 

THE TABLES
1

5

6

2

8
7

4

3

Know when the 
predicate is applied– 

should be earlier
rather than later

Look for logical reads 
(fewer logical I/Os 

means faster query)

Know what objects 
exist (avoid duplicating 

efforts later on)

What is primary key 
definition, and is it 

clustered?

Check to see if covering 
indexes can be created (avoid 

duplication, overlapping)

Make sure to work 
with the smallest 

possible logical set

Look for select * or scalar 
functions (the more data brought 
back, the less optimal it may be

to use certain functions

Make sure you’re 
working with tables 

(not views)

Look to reduce 
logical i/o

Abuse of wildcards (*)— 
pulling back too many rowsJoin/query/table hints Nested views that go 

across linked servers

Sub-queries

Examine WHERE and
JOIN clauses — what is 
the filtered rowcount?

Most useful
for RIGHT, LEFT, 

OUTER joins

Set statistics on (set 
statistics IO on + set 

statistics time on) 

Run the
plan

Make certain 
you know the 

rowcount

Check the actual 
plan, not the 

estimated plan

Make small 
changes

Look for 
CASE, CAST, 

CONVERT

Record the 
results and 
compare

Focus on logical 
I/O (number of 
logical reads)

Scalar functions

Code-first generators 
(EMF, LNQ, nHibernate) 

can be mis-used and
 bloat the plan cache

Consider covering index—an 
index that includes every 

column that satisfies the query

Focus on
 most expensive 
operations first

Cursors and 
row-by-row 
processing

SARG-able 
(make an index 

searchable so a full 
scan isn’t needed)

Find and fix query performance faster with SolarWinds Database Performance Analyzer. Free 14-day trial at: www.solarwinds.com/dpa-download 
© 2015 SolarWinds. All rights reserved.

RE-RUN
 THE QUERY

ENGINEER OUT 
THE STUPID

RE-RUN
 THE QUERY

9

CONSIDER ADJUSTING INDEXES

10
11

12

Consider a filtered
index (but not if you 
have parameterized 

statements)


